I EXERCICE N°1: CHARGE D'UN CONDENSATEUR À COURANT CONSTANT.

Un condensateur de capacité C inconnu est chargé à courant constant I = 250 μ A. A l'instant t_0 = 0 , le condensateur est initialement déchargé. La charge commence. Après une durée t_1 = 7 min, la tension U aux bornes du condensateur est U = 31.8 V.

- 1. Rappeler l'expression de la charge Q (i, t) et les unités utilisées.
- 2. Rappeler l'expression de la tension Q (C , U) et les unités utilisées.
- 3. Déterminer la charge Q portée par une armature du condensateur pour l'instant t = t₁.
- 4. Tracer la courbe U (Q) [échelle: 10 V ↔ 2 cm; 10 mC ↔ 1 cm].
- 5. En déduire la capacité C du condensateur.
- 6. Calculer l'énergie W emmagasinée par le condensateur à la l'instant t₁.

II EXERCICE N°2: ASSOCIATION DE CONDENSATEURS.

On dispose de deux condensateurs $C_1 = 2200 \mu F$ et $C_2 = 3.3 mF$.

- Établir l'expression de la capacité équivalente C_s lorsque les deux condensateurs sont branchées en série.
- 2. Établir l'expression de la capacité équivalente C_P lorsque les deux condensateurs sont branchés en parallèle.
- 3. On charge le condensateur C₁ sous la tension U = 30 V. Déterminer la charge Q₁ portée par une armature de ce condensateur.
- 4. On isole le condensateur C₁ et on branche le condensateur C₂, initialement déchargé, à ses bornes. Déterminer la charge portée par l'ensemble.
- 5. En déduire la tension U' aux bornes de l'ensemble.

III EXERCICE N°3: ASSOCIATION DE CONDENSATEURS EN PARALLÈLE.

Un condensateur de C_1 = 6 μ F est branché en parallèle avec un condensateur de C_2 = 10 mF. La charge accumulée sur les armatures du groupe de condensateurs est de 200 mC.

- 1. Quelle est la capacité équivalente du groupe de deux condensateurs ?
- 2. Quelle est la d.d.p. aux bornes des condensateurs en parallèle ?
- 3. Quelle est la charge accumulée sur les armatures du condensateur de 6 mF?
- 4. Quelle est la charge accumulée sur les armatures du condensateur de 10 mF?

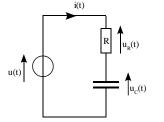
IV EXERCICE N°4: ASSOCIATION DE CONDENSATEUR EN SÉRIE.

Deux condensateurs, initialement déchargés, de capacité C_1 = 20 nF et C_2 = 33 nF sont branchés en série. L'ensemble est alimenté sous la tension U = 20 V.

- 1. Déterminer la capacité équivalente C_{EQ}.
- 2. Calculer la charge Q portée par la capacité équivalent.
- 3. Quelle est la charge q portée par un condensateur.
- 4. En déduire la tension U₁ aux bornes de C₁ et U₂ aux bornes de C₂.
- 5. Calculer l'énergie W emmagasinée par l'ensemble.

V EXERCICE N°3: ASSOCIATION DE CONDENSATEURS EN PARALLÈLE.

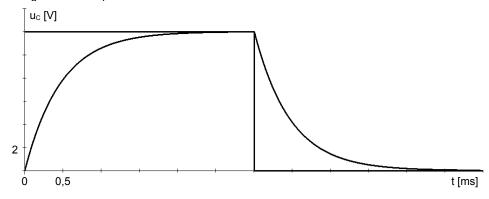
Un condensateur C_1 = 3,3 mF est chargé sous la tension U = 20 V, un autre condensateur C_2 = 2200 μ F est chargé sous la tension U' = 10 V.


- 1. Déterminer pour charge condensateur les charges Q₁ et Q₂.
- 2. Les deux condensateurs sont isolés et branchés en dérivation. Quelle est alors la charge Q portée par l'ensemble?

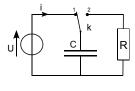
L'essentiel

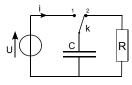
3. En déduire la tension U" aux bornes de l'ensemble.

03/09/08


VI EXERCICE N°4: CHARGE, DÉCHARGE D'UN CONDENSATEUR À TRAVERS UNE RÉSISTANCE R.

On réalise le montage ci-contre.


- Placer sur ce schéma la voie Y₁ pour visualiser la tension u(t) et Y₂ pour visualiser la tension u_c(t).
- Rappeler l'expression de l'intensité i en fonction de la capacité C et de la tension u_c.
- Établir l'expression de la tension u en fonction de la résistance R, de la capacité C et de la tension u_c.


L'oscillogramme est représenté ci-dessous :

- 4. Déterminer graphiquement la valeur de la constante de temps τ .
- 5. Déterminer la valeur de la capacité C si R = $10 \text{ k}\Omega$.
- 6. Déterminer l'énergie W emmagasinée à la fin de la charge du condensateur.
- 7. Préciser la valeur de la tension pour u_c (3 τ).
- 8. On augmente la fréquence f de la tension u(t). Comment évolue la tension u_C?

VII EXERCICE N°5: PRINCIPE D'UNE MINUTERIE.

A l'instant t, l'interrupteur k est dans la position 1. Dès qu'on relâche l'interrupteur, il revient dans la position 2.

U = 48 V et C = 5 mF. La résistance \dot{R} modélise la résistance d'un relais.

- 1. Déterminer la charge Q accumulée sur une armature lorsque l'interrupteur est dans la position 1.
- 2. Le relais reste actionné tant que la tension aux bornes de la résistance $u_R > 30V$ (63% de U) pendant une durée de 10 minutes. En déduire la valeur de la résistance R du relais.

1/2 03/09/08 L'essentiel