T.P. N° ... Association de résistances.

I Objectif : Savoir utiliser la loi d'ohm et savoir calculer la puissance dissipée par une résistance. Savoir déterminer une caractéristique équivalente.

II Préparation pour le montage série:

1- Dessiner le schéma de deux résistances R_1 et R_2 en série branchées aux bornes d'un générateur qui délivre une tension U. Flécher l'intensité I, les tensions U_1 aux bornes de R_1 , U_2 aux bornes de R_2 ainsi que la tension U.

Placer les différents appareils de mesures permettant de mesurer les différentes grandeurs.

- 2- Etablir l'expression littérale de U₁ en fonction de R₁ et I.
- 3- Etablir l'expression littérale de U₂ en fonction de R₂ et I.
- 4- Etablir l'expression de U en fonction de U_1 et U_2 .
- 5- En déduire l'expression de U en fonction de R₁, R₂ et I.
- 6- Par analogie avec la loi d'ohm, établir l'expression de la résistance équivalente $R_{\rm eq}$ en fonction de R_1 et R_2
- 7- Etablir l'expression de P_{1} , la puissance dissipée par la résistance R_{1} en fonction de R_{1} et I. Sachant de $P_{\text{1MAX}}=0.25$ W, établir l'expression du courant I_{1MAX} que peut supporter cette résistance.
 - 8- Faire de même pour I_{2MAX}.
- 9- En déduire le courant I_{MAX} à ne pas dépasser pour le branchement série des deux résistances.

III Manipulation:

Matériel utilisé : $R_{\text{1}}=1~\text{k}\Omega,\,R_{\text{2}}=10~\text{k}\Omega$.

Calculer le courant I_{MAX} à ne pas dépasser.

Réaliser le montage et compléter le tableau ci-dessous.

reament to monage or completel to tableau of desposisi						
U(V)						
I (mA)						I_{MAX}

ATTENTION: NE PAS DEPASSER IMAX.

Exploitation des résultats:

Tracer sur une feuille de papier millimétré les caractéristiques théoriques des résistances R_1 et R_2 ainsi que la caractéristique expérimentale $R_{\rm eq}$.

Calculer pour les différentes valeurs de I les tension U₁ et U₂.

I(mA)	0	5	10	20
$U_1 = R_1.I(V)$				
$U_2 = R_2.I(V)$				
$U = U_1 + U_2(V)$				

Tracer sur la feuille de papier millimétré les différents points U(I) et comparer la nouvelle caractéristique obtenue à la caractéristique expérimentale. Que peut-on en conclure.

IV Préparation pour le montage parallèle:

1- Dessiner le schéma de deux résistances R_1 et R_2 en dérivation branchées aux bornes d'un générateur qui délivre une tension U. Flécher la tension U, les intensités I_1 qui traverse R_1 , I_2 qui traverse R_2 ainsi que l'intensité I_1 débité par le générateur.

Placer les différents appareils de mesures permettant de mesurer les différentes grandeurs.

- 2- Etablir l'expression littérale de U en fonction de R₁ et I₁.
- 3- Etablir l'expression littérale de U en fonction de R₂ et I₂.
- 4- Etablir l'expression de I en fonction de I₁ et I₂.
- 5- En déduire l'expression de I en fonction de R₁, R₂ et U.
- 6- Par analogie avec la loi d'ohm, établir l'expression de la résistance équivalente $R_{\rm eq}$ en fonction de R_1 et R_2
- 7-Etablir l'expression de $P_{\rm I}$, la puissance dissipée par la résistance $R_{\rm I}$ en fonction de $R_{\rm I}$ et U. Sachant de $P_{\rm IMAX}=0,25$ W, établir l'expression du courant $I_{\rm IMAX}$ que peut supporter cette résistance.
 - 8- Faire de même pour I_{2MAX}.
- 9-En déduire la tension $\,U_{MAX}\,$ à ne pas répasser pour le branchement parallèle des deux résistances.

V Manipulation:

Matériel utilisé : $R_1 = 1 \text{ k}\Omega$. $R_2 = 10 \text{ k}\Omega$.

- 1- Calculer la tension U_{MAX} à ne pas dépasser.
- 2- Réaliser le montage et compléter le tableau ci-dessous.

U(V)	•		U_{MAX}
I (mA)			

ATTENTION: NE PAS DEPASSER IMAX.

VI Exploitation des résultats:

- 1- Tracer sur une feuille de papier millimétré les caractéristiques théoriques des résistances R_1 et R_2 ainsi que la caractéristique expérimentale $R_{\rm eq}$.
 - 2- Calculer pour les différentes valeurs de U les intensités I1 et I2.

U = (V)	0	5	10	20
$I_1 = \frac{U}{I_1}$ (mA)				
$I_2 = \frac{U}{I_2}$ (mA)				
$I = I_1 + I_2$ (mA)				

3- Tracer sur la feuille de papier millimétré les différents points U(I) et comparer la nouvelle caractéristique obtenue à la caractéristique expérimentale. Que peut-on en conclure.

VII Conclusion générale :

La résistance équivalente pour n résistance branchées en :

Série : Req =
Dérivation :
$$\frac{1}{Req}$$
 =