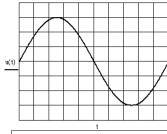
Exercice n°1: Pour les oscillogrammes suivants, établir l'expression de u(t):

Oscillogramme n°1:



Voie 1: 5V/div , Voie 2: ... V/div Time : 2 ms/div

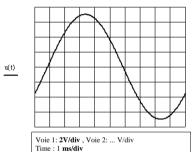
 $\begin{array}{ll} U_{\text{MAX}} = & U = \\ T = & f = & \omega = \\ u(0) = & \end{array}$

déphasage à l'origine :

$$\phi = \sin^{-1} \frac{u(0)}{U_{MAX}} = \text{rad} =$$
°

u(t) =

Oscillogramme n°2:



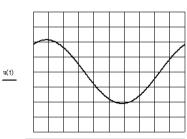
$$\begin{array}{ll} U_{\text{MAX}} = & U = \\ T = & f = & \omega = \\ u(0) = & \end{array}$$

déphasage à l'origine :

$$\phi = \sin^{-1} \frac{u(0)}{U_{MAX}} = \text{rad} =$$
°

u(t) =

Oscillogramme n°3:



Voie 1: **1V/div** , Voie 2: ... V/div Time : **5 ms/div**

$$\begin{array}{ll} U_{\text{MAX}} = & U = \\ T = & f = & \omega = \\ u(0) = & \end{array}$$

déphasage à l'origine :

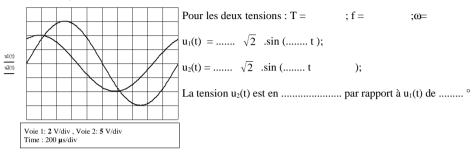
$$\phi = \sin^{-1} \frac{u(0)}{U_{MAX}} = \text{rad} =$$

u(t) =

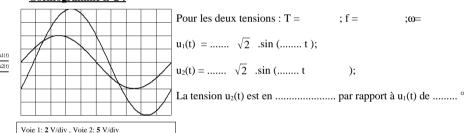
Exercice n°2 : Notion de déphasage.

On relève à l'oscilloscope deux tensions alternatives sinusoïdales $u_1(t)$ sur la voie 1 et $u_2(t)$ sur la voie 2. Pour tous les oscillogrammes, $u_1(t)$ est la grandeur prise comme référence des phases c'est-à-dire que $u_1(0)=0$. Pour chacun des oscillogrammes, déterminer les expressions temporelles de $u_1(t)$ et de $u_2(t)$ et préciser si $u_2(t)$ est en avance, en retard, en phase ou en opposition de phase.

Oscillogramme n°1:

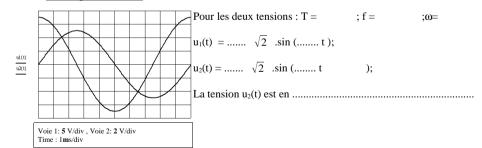


Oscillogramme n°2:

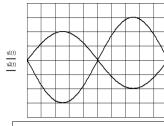


Oscillogramme n°3:

Time: 0.5 ms/div



Oscillogramme n°4:



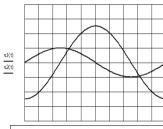
Voie 1: 2 V/div , Voie 2: 5 V/div Time : 0.5 ms/div Pour les deux tensions : $T = : f = : \omega =$

 $u_1(t) = \sqrt{2} .sin (......t);$

 $u_2(t) = \dots \sqrt{2} \cdot \sin (\dots t);$

La tension u₂(t) est en

Oscillogramme n°5:



Pour les deux tensions : T =; f =; $\omega =$

 $u_1(t) = \sqrt{2} .sin (......t);$

 $u_2(t) = \sqrt{2} .sin (......t)$

La tension $u_2(t)$ est en par rapport à $u_1(t)$ de $^{\circ}$

Voie 1: 5 V/div , Voie 2: 2 V/div Time : 2ms/div

Oscillogramme n°6:

Pour les deux tensions : T =; f =; $\omega =$

 $u_1(t) = \sqrt{2} .sin (......t);$

 $u_2(t) = \dots \sqrt{2} \cdot \sin (\dots t);$

La tension $u_2(t)$ est en par rapport à $u_1(t)$ de $^\circ$

Voie 1: 2 V/div , Voie 2: 5 V/div Time : 200 μ s/div

Conclusion:

Si $u_1(t)$ est prise comme origine des phases (c'est-à-dire que u(0)=......) et si ϕ est le déphasage à l'origine de $u_2(t)$,

si ϕ est positif, $u_2(t)$ est en par rapport à $u_1(t).$

si ϕ est négatif, $u_2(t)$ est en par rapport à $u_1(t)$.

si $\varphi = 0$, $u_2(t)$ est en avec à $u_1(t)$.

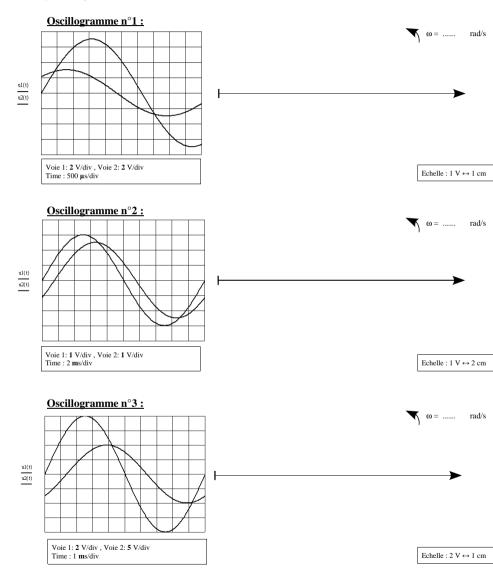
si ϕ =180 $^{\circ}$, $u_{2}(t)$ est en par rapport à $u_{1}(t).$

Y.MOREL Tension alternatives sinusoïdales, vecteurs de Fresnel, déphasage

Page 3/11

Exercice n°3: Vecteurs de Fresnel ou http://fisik.free.fr/animations/SINUS2.swf

Pour chacun des oscillogrammes suivants, la tension $u_1(t)$ est prise comme référence des phases. Tracer pour chacune des tensions $u_1(t)$ et $u_2(t)$ le vecteur de Fresnel correspondant \vec{U}_1 et \vec{U}_2 . (La norme de chaque vecteur sera égale à la valeur de la tension efficace tension considérée.) et tracer l'angle orienté ϕ de \vec{U}_1 vers \vec{U}_2 .

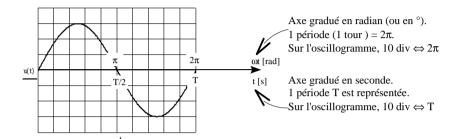


Exercice n°4: Comment lire un déphasage à partir d'un oscillogramme:

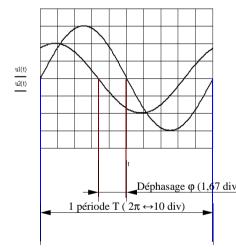
<u>Principe</u>: A toute grandeur alternative sinusoïdale u(t), on peut associer un vecteur tournant \vec{U} tournant à la vitesse de rotation $\omega = 2 \cdot \pi \cdot f$.

Lorsque \vec{U} fait un tour ($2 \cdot \pi$), la grandeur temporelle a décrit une période T on peut ainsi graduer l'axe du temps en dégré.

Exemple:



Mesurer le déphasage entre deux grandeurs :



Dans notre exemple, la tension $u_1(t)$ est prise comme référence des phases. Une période T de $u_1(t)$ tient sur 10 divisions.

Mesure du déphasage :

10 div
$$\leftrightarrow 2\pi$$
 (ou 360°)
1,67 div $\leftrightarrow \frac{1,67 \times 2 \pi}{10} = 1,05 \text{ rad (ou } 60^\circ).$
 $\varphi = 1,05 \text{ rad } (+60^\circ)$

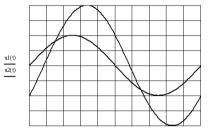
Pour connaître le signe de ϕ , il suffit de déterminer quelle grandeur est en avance (ou en retard) par raport à l'autre.

Déphasage ϕ (1,67 div) Dans notre exemple, $u_2(t)$ est en avance par rapport à $u_1(t)$.

 $u_2(t)$ passe par zéro sur front descendant avant $u_1(t)$.

$$u_1(t) = U_1 \sqrt{2} \sin(\omega t)$$
 (référence des phases)
 $u_2(t) = U_2 \sqrt{2} \sin(\omega t + \varphi)$

Pour chacun des oscillogrammes suivants, déterminer sur combien de divisions tient une période (ou demi-période) et déterminer le déphasage φ entre les deux grandeurs (dans tous les exercices, la tensions $u_1(t)$ est prise comme référence des phases).



Une période T tient sur divisions. Le déphasage φ tient sur divisions. div $\leftrightarrow 2\pi$ (ou 360 °)

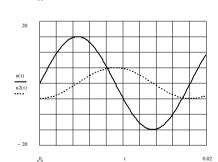
..... div
$$\leftrightarrow 2\pi$$
 (ou 360°)
.... div $\leftrightarrow \frac{... \times 2\pi}{...} = \text{ rad (ou°)}.$

La tension $u_2(t)$ est par rapport à $u_1(t)$ et

$$u_1(t) = U_1 \sqrt{2} \sin(\omega t)$$

$$u_2(t) = U_2 \sqrt{2} \sin(\omega t + \varphi)$$

Une période T tient sur divisions. Le déphasage ϕ tient sur divisions. div $\leftrightarrow 2\pi$ (ou 360 °) div $\leftrightarrow 2\pi$ (ou 3π = rad (ou°).



Une période T tient sur divisions. Le déphasage φ tient sur divisions.

La tension u₂(t) est par rapport à u₁(t) et

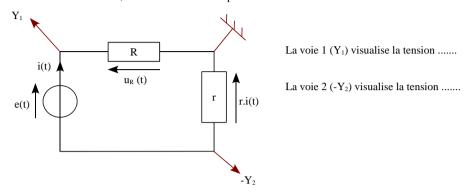
..... div
$$\leftrightarrow 2\pi$$
 (ou 360 °)
..... div $\leftrightarrow \frac{.... \times 2 \pi}{...} = \text{ rad (ou}$ °).

La tension $u_2(t)$ est par rapport à $u_1(t)$ et

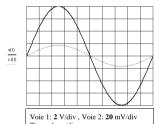
$$u_1(t) = \dots \sqrt{2} \sin(\dots t) u_2(t) = \dots \sqrt{2} \sin(\dots t + \dots)$$

Exercice n°5: Étude des dipôles élémentaires en alternatif sinusoïdal.

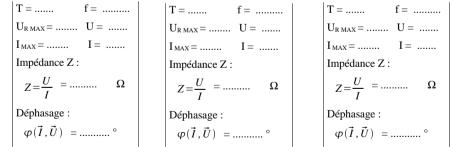
1- On utilise le montage ci-dessous pour visualiser simultanément la tension u_R(t) aux bornes de la résistance R et l'image de l'intensité i r.i(t) qui circule dans le montage à l'aide d'une résistance de visualisation $r = 1 \Omega$. Pour cela, on utilise un oscilloscope dont la masse est isolée de la terre.

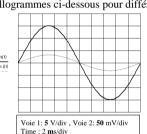


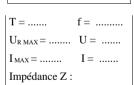
On observe les différents oscillogrammes ci-dessous pour différentes tensions e(t) :



Time: 1 ms/div







$$Z = \frac{U}{I} = \dots \Omega$$

Déphasage :
$$\varphi(\vec{I}, \vec{U}) = \dots \circ$$

Voie 1: 0.5 V/div . Voie 2: 5 mV/div Time: 0.5ms/div

$$\left| \begin{array}{ll} T = & f = \\ U_{R\,MAX} = & U = \\ I_{MAX} = & I = \\ Impédance Z : \end{array} \right.$$

$$Z = \frac{U}{I} = \dots \Omega$$

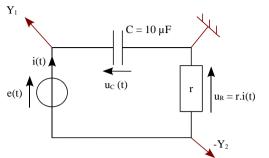
$$\varphi(\vec{I}\,,\vec{U}\,) \ = \dots \dots \circ$$

Conclusion:

Pour une résistance R, l'impédance d'une résistance R est $Z_R = \dots$.

avec l'intensité i qui la traverse.

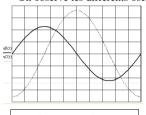
2- On utilise le montage ci-dessous pour visualiser simultanément la tension u_c(t) aux bornes du condensateur C et l'image de l'intensité i u_R = r.i(t) qui circule dans le montage à l'aide d'une résistance de visualisation $r = 100 \Omega$. Pour cela, on utilise un oscilloscope dont la masse est isolée de la terre.

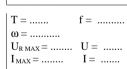


La voie 1 (Y₁) visualise la tension

La voie 2 (-Y₂) visualise la tension

On observe les différents oscillogrammes ci-dessous pour différentes tensions e(t):



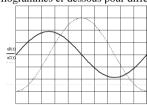


$$U_{C \text{ MAX}} = \dots \qquad U_{C} = \dots \qquad \qquad$$
 Impédance Z :

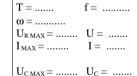
$$Z_c = \frac{U_c}{I} = \dots \qquad \Omega$$

$$Z_c = \frac{1}{I} = \dots \qquad \Omega$$

Déphasage :
$$\varphi(\vec{I}, \vec{U}) = \dots \circ$$



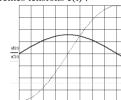
Voie 1: 2 V/div , Voie 2: 2 V/div Time : 1 ms/div



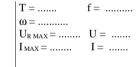
Impédance Z :
$$Z = \frac{U_C}{U_C}$$

$$Z_c = \frac{1}{C \cdot w} = \dots$$

Déphasage :
$$\varphi(\vec{I}, \vec{U}) =$$



Voie 1: 5 V/div , Voie 2: 5 V/div Time: 1 ms/div



$$U_{C \text{ MAX}}$$
 = U_{C} = Impédance Z :

$$Z_c = \frac{1}{C \cdot \omega} = \dots$$

Déphasage :

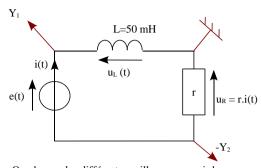
Dephasage:
$$\varphi(\vec{I}, \vec{U}) = \dots \circ$$

Conclusion:

Pour un condensateur de capacité C, l'impédance d'un condensateur C est $Z_C = \dots$. L'impédance Z_C du condensateur dépend de et aussi de la

tension u_C aux bornes du condensateur.

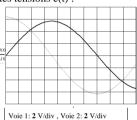
3- On utilise le montage ci-dessous pour visualiser simultanément la tension u₁(t) aux bornes de l'inductance L et l'image de l'intensité i u_R = r.i(t) qui circule dans le montage à l'aide d'une résistance de visualisation $r = 100 \Omega$. Pour cela, on utilise un oscilloscope dont la masse est isolée de la terre.



La voie 1 (Y₁) visualise la tension

La voie 2 (-Y₂) visualise la tension

On observe les différents oscillogrammes ci-dessous pour différentes tensions e(t):



Voie 1: 5 V/div, Voie 2: 5 V/div Time: 0.2 ms/div

$$\begin{split} T = & \dots & f = & \dots & \dots \\ \omega = & \dots & \dots & U_{R \, MAX} = & \dots & U = & \dots & \dots \\ I_{MAX} = & \dots & I = & \dots & \dots & \dots \end{split}$$

$$U_{LMAX} = U_{L} =$$

$$Z_L = \frac{U_L}{I} = \dots$$

$$Z_L = L \cdot \omega = \dots$$

$$\begin{aligned} T &= \dots & f &= \dots & \\ \omega &= \dots & \\ U_{R \, MAX} &= \dots & U &= \dots & \\ I_{MAX} &= \dots & I &= \dots & \end{aligned}$$

$$U_{L\,\text{MAX}} = \dots \qquad U_L = \dots \dots$$
 Impédance Z :

$$Z_L = \frac{U_L}{I} = \dots$$

$$Z_L = L \cdot \omega = \dots$$
 Question Sphasage:

Déphasage :
$$\varphi(\vec{I}, \vec{U}) = \dots \circ$$

$$\begin{array}{ll} T = & f =\\ \omega = & U =\\ U_{R\,MAX} = & U =\\ I_{MAX} = & I = \end{array}$$

Time: 0.2 ms/div

$$U_{L \text{ MAX}} = \dots \qquad U_{L} = \dots$$

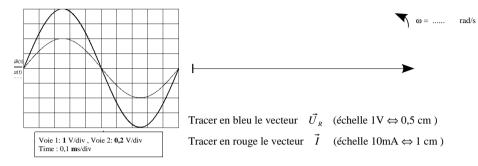
$$Z_L = \frac{U_L}{I} = \dots$$

Conclusion:

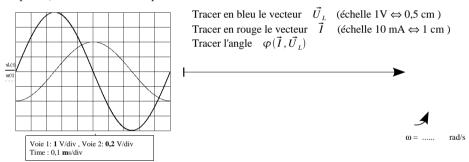
Pour une inductance (bobine) d'inductance L, l'impédance d'une bobine L est $Z_L = \dots$. L'impédance $Z_{\scriptscriptstyle L}$ de la bobine dépend de et aussi de la Le déphasage $\varphi(\vec{I}, \vec{U}) = \dots$

Exercice n°6:

1- On observe à l'oscilloscope la tension u_R aux bornes d'une résistance $R=100~\Omega$ sur la voie 1 (référence des phases) et l'allure du courant qui la traverse à travers une résistance de visualisation de 10Ω .



2- On observe à l'oscilloscope la tension u_L aux bornes d'une inductance L sur la voie 1 (référence des phases) et l'allure du courant qui la traverse à travers une résistance de visualisation de 10Ω .



3- On observe à l'oscilloscope la tension u_C aux bornes d'un condensateur C sur la voie 1 (référence des phases) et l'allure du courant qui le traverse à travers une résistance de visualisation de $10\,\Omega$.

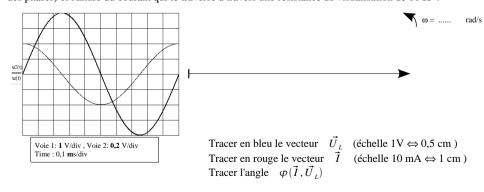


Tableau récapitulatif des impédances élémentaires :

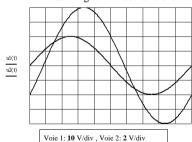
Dipôle	Représentation de	Fresnel	Impédance	Déphasage
\vec{U}_R	\vec{l}	\vec{l}	$Z_R = R$	$\varphi(\vec{l},\vec{U})$ =0
$\overrightarrow{\vec{U}_L}$	\vec{l} $\varphi_{\bar{l},\bar{U}}$	\vec{U}_L $\varphi_{\vec{I},\vec{U}}$ \vec{I}	$Z_L = L \cdot \omega$	$\varphi(\vec{I}, \vec{U}) = +90$ °
\vec{l} $\vec{V_c}$	\vec{l} $\phi_{\vec{l},\vec{v}}$ \vec{U}_c	\vec{U}_{c}	$Z_c = \frac{1}{C \cdot \omega}$	$\varphi(\vec{I},\vec{U}) = -90$ °

Exercice n°7:

Un GBF délivre une tension e(t) et alimente une inductance L en série avec une résistance R.

1- proposer un montage permettant de visualiser à l'oscilloscope : e(t) sur la voie 1 (référence des phases) et l'image du courant i(t) sur la voie 2.

2- L'oscillogramme des tensions est représenté ci-dessous :



Time: 0,1 ms/div

2.1- Déterminer le déphasage $\varphi(\vec{I}, \vec{U})$.

2.2- La résistance $R=1000~\Omega.$ Calculer l'intensité I qui circule dans le montage.

2.3- Calculer l'impédance Z du montage ($Z = \frac{U}{I}$).

Y.MOREL Tension alternatives sinusoïdales, vecteurs de Fresnel, déphasage Page 11/11